

ДЫХАНИЕ - процесс аэробного окисления клетками растения питательных органических веществ до CO_2 и H_2O с целью получения энергии и метаболитов, необходимых для жизнедеятельности.

ОБЩЕЕ УРАВНЕНИЕ ДЫХАНИЯ

$$C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O + 2875$$
 КДЖ

СУБСТРАТЫ ДЫХАНИЯ

•УГЛЕВОДЫ:

- ПОЛИСАХАРИДЫ;
- ОЛИГОСАХАРИДЫ;
- МОНОСАХАРИДЫ.
- •жиры (масла).
- •БЕЛКИ.

6

Стадии дыхания (по В.И.Палладину)

1. ОКИСЛЕНИЕ СУБСТРАТА

$$C_6H_{12}O_6 + 6H_2O + 12R = 6CO_2 + 12RH_2$$

2. Окисление восстановленных акцепторов водорода (RH₂) и окислительное фосфорилирование

$$12RH_2 + 6O_2 = 12R + 12H_2O$$

Пути окисления субстрата:

Пути окисления *углеводов* (моносахахаров):

- Гликолиз и цикл Кребса
- Пентозофосфатный цикл.

Окисление жиров и белков после их гидролиза идет отдельными путями также через цикл Кребса.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ДЫХАНИЯ

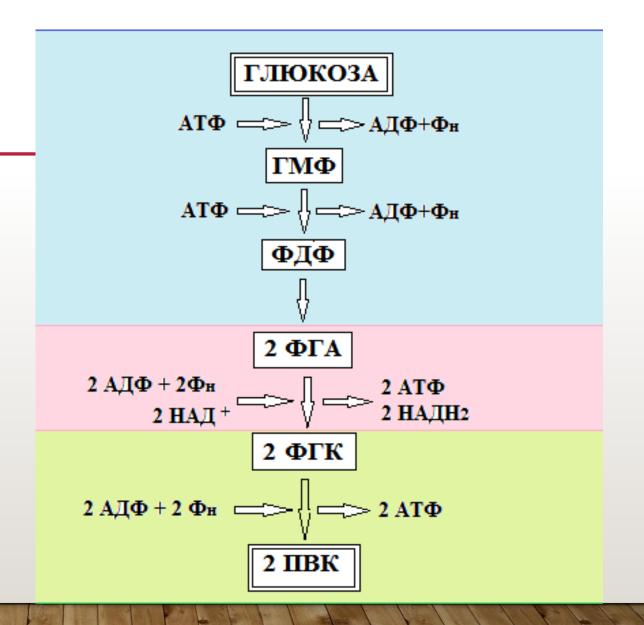
- I. ПОЛУЧЕНИЕ ЭНЕРГИИ;
- 2. ПОЛУЧЕНИЕ ХИМИЧЕСКИ АКТИВНЫХ МЕТАБОЛИТОВ;
- 3. ОКИСЛЕНИЕ ВРЕДНЫХ ВЕЩЕСТВ;
- 4. ОБРАЗОВАНИЕ МЕТАБОЛИЧЕСКОЙ ВОДЫ.

Окисление субстрата $C_6H_{12}O_6 + 6H_2O + 12R = 6CO_2 + 12RH_2$

Окисление происходит без непосредственного участия кислорода – *анаэробно*.

Протоны и электроны (водород) переносятся от субстрата на коферменты НАД+ и ФАД (субстрат окисляется, коферменты восстанавливаются).

Часть энергии субстрата передается восстановленным коферментам, часть используется на субстратное фосфорилирование (образование АТФ), остаток энергии изпучается в виде тепла.

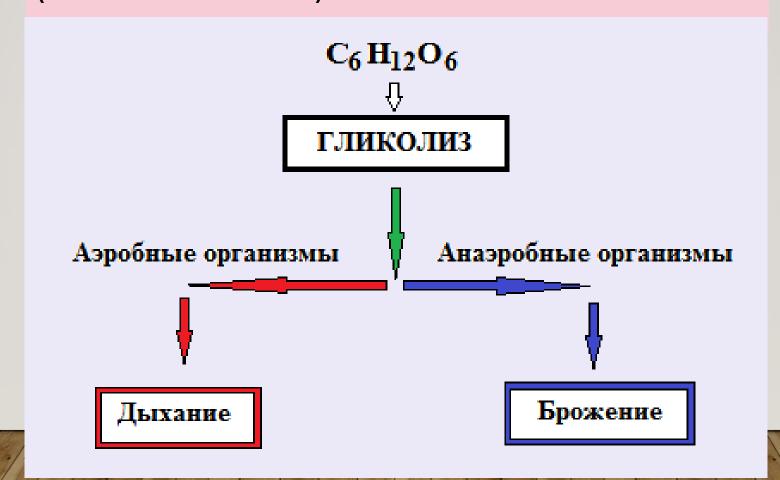

Процесс окисления углеводов (глюкозы) происходит последовательно вначале в процессе гликолиза, затем в цикле Кребса.

ГЛИКОЛИЗ – процесс анаэроб-ного окисления глюкозы до пировиноградной кислоты (ПВК).

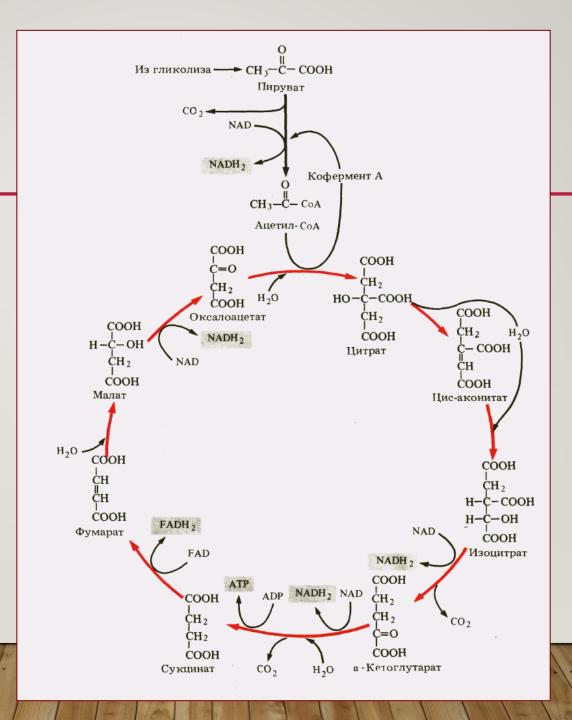
ЭТАПЫ ГЛИКОЛИЗА

- Фосфорилирование глюкозы и ее расщепление на 2 молекулы ФГА;
- 2. Окисление ФГА до ФГК, первое субстратное фосфорилирование и восстановление НАД+;
- 3. Превращение ФГК в ПВК и второе субстратное фосфорилирование.

СХЕМА ГЛИКОЛИЗА



Покализация реакций гликолиза – цитоплазматический матрикс, ядро.


Энергетический выход гликолиза на I моль глюкозы: 2 моля АТФ и 2 моля НАДН₂.

Этап гликолиза – общий для процессов дыхания и брожения.

СВЯЗЬ ДЫХАНИЯ С БРОЖЕНИЕМ (ПО С.П.КОСТЫЧЕВУ)

ЦИКЛ КРЕБСА

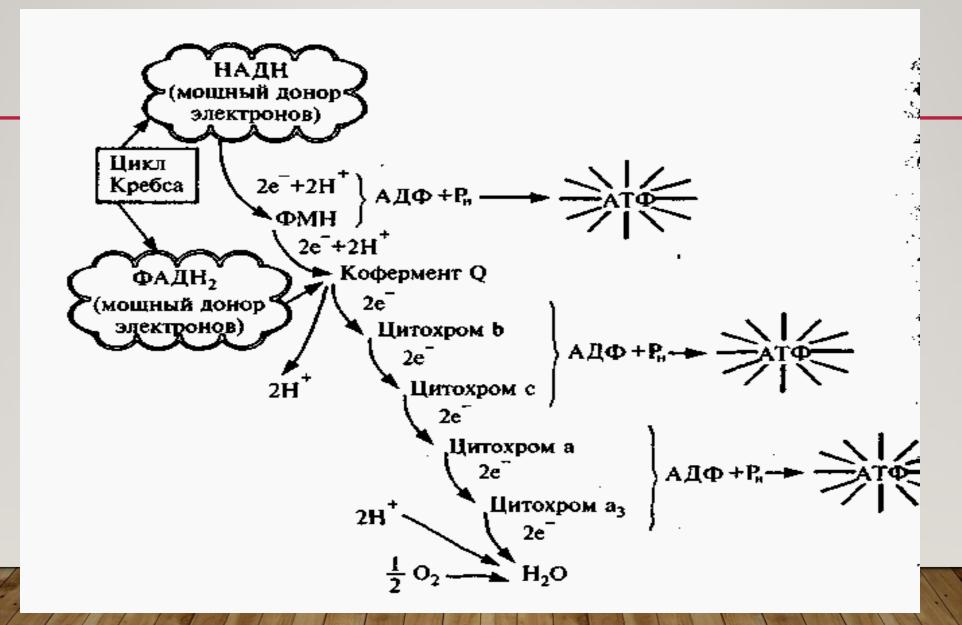
16

Энергетический выход процесса окисления и декарбоксилирования ПВК в митохондриях: 4HAДH2, I ДАДН2, I

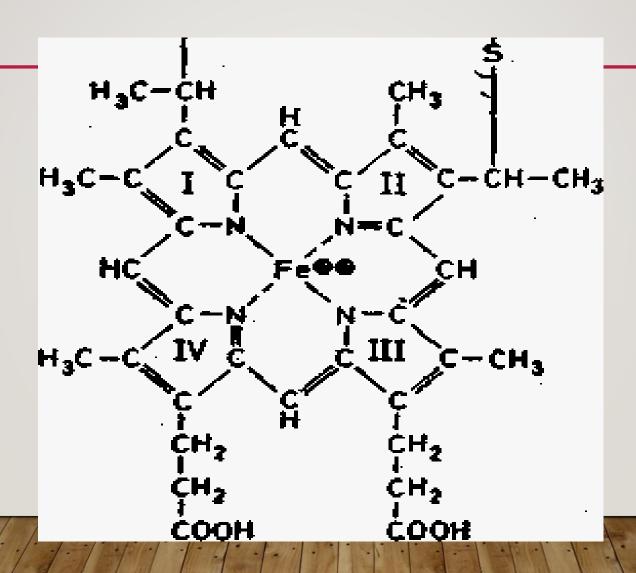
При декарбоксилировании образуется 3 молекулы СО2.

Цикл Кребса – центральное звено метаболизма клетки.

<u>Ацетил-КоА</u> – исходное вещество для синтеза многих органических соединений клетки.


Гликолиз – анаэробный этап, цикл Кребса – аэробный этап.

На второй стадии дыхания происходит окисление в дыхательной цепи восстановленных акцепторов водорода <u>НАДН2</u>, ФАДН2 и окислительное фосфорилирование.


$$12RH_2 + 6O_2 = 12R + 12H_2O$$

Дыхательная, или электрон-транспортная цепь — это совокупность молекул органических веществ-переносчиков электронов, локализованных на мембранах крист митохондрий.

ДЫХАТЕЛЬНАЯ ЦЕПЬ

ЦИТОХРОМ ОСНОВА МОЛЕКУЛЫ – ПОРФИРИНОВОЕ ЯДРО

При окислении НАДН₂ и ФАДН₂ водород (электроны и протоны) передаются к кислороду по ЭТЦ.

Процесс фосфорилирования АДФ, сопряженный с переносом электронов в дыхательной цепи митохондрий, называется *окислительным фосфорилированием*.

Коэффициэнт полезного действия дыхания в расчете на I моль глюкозы

Гликолиз: $2AT\Phi + 2HAДH_2$;

Цыкл Кребса: $2AT\Phi + 8HAДH_2 + 2\Phi AДH_2$;

 \sum АТФ=4АТФ+10НАДН₂*3АТФ+2ФАДН₂*2АТФ=38АТФ.

КПД =
$$\frac{38$$
АТФ x 41,87 кДж x I 00 = 55,4%

2842 – энергия I моля глюкозы.

- ПОЛИСАХАРИДОВ КЛЕТОЧНОЙ ОБОЛОЧКИ;
- НУКЛЕОТИДОВ И НУКЛЕИНОВЫХ КИСЛОТ;
- ВЕЩЕСТВ ВТОРИЧНОГО ОБМЕНА (ЛИГНИН, ДУБИЛЬНЫЕ ВЕЩЕСТВА, ФЛАВОНОИДЫ, ТЕРПЕНОИДЫ);
- ГОРМОНОВ (АУКСИН, ГИББЕРЕЛЛИН, ЦИТОКИНИН, АБСЦИЗОВАЯ КИСЛОТА) и др.

Дыхание является источником энергии для обеспечения процессов синтеза.

